Selenium Derivatization of Nucleic Acids for Phase and Structure Determination in Nucleic Acid X-ray Crystallography

نویسندگان

  • Jia Sheng
  • Zhen Huang
چکیده

Selenium derivatization (via selenomethionine) of proteins for crystal structure determination via MAD phasing has revolutionized protein X-ray crystallography. It is estimated that over two thirds of all new crystal structures of proteins have been determined via Se-Met derivatization. Similarly, selenium functionalities have also been successfully incorporated into nucleic acids to facilitate their structure studies and it has been proved that this Se-derivatization has advantages over halogen strategy, which was usually used as a traditional method in this field. This review reports the development of site-specific selenium derivatization of nucleic acids for phase determination since the year of 2001 (mainly focus on the 2'-position of the ribose). All the synthesis of 2'-SeMe modified phosphoramidite building blocks (U, C, T, A, G) and the according oligonucleotides are included. In addition, several structures of selenium contained nucleic acid are also described in this paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis, Structure and Function Studies of Selenium and Tellurium Derivatized Nucleic Acids

Nucleic acids play important roles in living systems by storing and transferring genetic information and directing protein synthesis. Recently, it was found that nucleic acids can catalyze chemical and biochemical reactions similar to protein enzymes. In addition, they can also serve as drug targets for the treatment of deadly diseases such as AIDS and cancers. As a result, the 3D structure stu...

متن کامل

Synthesis, Structure, Function and Biomedical Studies of Nucleic Acid Derivatized with Selenium

Nucleic acids are macromolecules in cells for storing and transferring genetic information. Moreover, nucleic acids, especially RNAs, can fold into well-defined 3D structures and catalyze biochemical reactions. As ubiquitous biological molecules in all living systems, nucleic acids are important drug targets, and they can also be used in diagnostics and therapeutics. Structural information of n...

متن کامل

Selenium derivatization of nucleic acids for crystallography

The high-resolution structure of the DNA (5'-GTGTACA-C-3') with the selenium derivatization at the 2'-position of T2 was determined via MAD and SAD phasing. The selenium-derivatized structure (1.28 A resolution) with the 2'-Se modification in the minor groove is isomorphorous to the native structure (2.0 A). To directly compare with the conventional bromine derivatization, we incorporated bromi...

متن کامل

Selenium derivatization and crystallization of DNA and RNA oligonucleotides for X-ray crystallography using multiple anomalous dispersion.

We report here the solid phase synthesis of RNA and DNA oligonucleotides containing the 2'-selenium functionality for X-ray crystallography using multiwavelength anomalous dispersion. We have synthesized the novel 2'-methylseleno cytidine phosphoramidite and improved the accessibility of the 2'-methylseleno uridine phosphoramidite for the synthesis of many selenium-derivatized DNAs and RNAs in ...

متن کامل

Derivatization of DNAs with selenium at 6-position of guanine for function and crystal structure studies

To investigate nucleic acid base pairing and stacking via atom-specific mutagenesis and crystallography, we have synthesized for the first time the 6-Se-deoxyguanosine phosphoramidite and incorporated it into DNAs via solid-phase synthesis with a coupling yield over 97%. We found that the UV absorption of the Se-DNAs red-shifts over 100 nm to 360 nm (epsilon = 2.3 x 10(4) M(-1) cm(-1)), the Se-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International Journal of Molecular Sciences

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2008